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Self-generated power-law tails in probability distributions
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We consider random processes characterized by the presence of correlations in their variance, or more
generally in some of their moments. Typical examples are constituted by autoregressive conditional hetero-
skedasticity(ARCH) processes which are known to display power-law tails in the associated probability
distributions. Here, we determine the corresponding exponents exactly and extend these results to relaxation
phenomena which can be expected to play a role in natural sciences.
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Probability distribution functions displaying power-law U§E(a+ bly|%)2a, (3
tails are ubiquitous in natural sciences and finance, at least in

some range of length or time scaldg. Their study is clearly
an important task for undertanding the underlying mechaf’mdq>0’ a>0, andb=0 are the model parameters, and the

nisms that generate them in the context of natural phenorR/efactor 12may) ensures the normalization condition
ena[2] and in the description of the distribution of stock J —=dXW(y™X)=1. The case=2 corresponds to standard
prices in financd3]. ARCH(1) processes, while the linear form for the casge
Here, we study “self-regulated” random processes dis-—1 corresponds to the so-called linear ARQH or
playing correlations in the moments of their standard devialARCH(1) processe$6]. _ o
tion, as a simple generalization of the well-known autore- A Simple prescription can be derived for dealing with Eq.
gressive conditional heteroskedasticiyRCH) processes, in (1) numerically. To do this, note that the integrily,x)
which the correlations are introduced in their variafidg ~ =J2.dX'W(y~x"), wherel(y,x) €[0,1] Vx,y, is the ac-
Although it is known that the associated probability distribu-cumulated probability that the transition occurs frgnnto
tion functions(PDF$ decay asymptotically as power laws the interval (~=,x]. Hence to obtain a value, after thenth
(cf. e.g., Podobnilet al. in Ref. [3]), the exact value of the step we generate an uncorrelated random numperho-
corresponding asymptotic exponents are known in a particunogenously distributed in the intervigd,1], and determine
lar case onlyf5]. The aim of our work is to determine them X, such thatl (x,_;,x,)=r, is satisfied. Solving fok,, we
in a more general fashion. Such relations are not only interobtain
esting from a theoretical point of view, but might also prove
useful concerning applications, for example, in the context of Xy=R(X,_1)= \/Effx erf-4(2r,— 1), ()
extremal event$5]. n-1
The random processes we are interested in, denoted ge-
nerically asR, produce a sequence of numbéxg} accord-  Whereo,  =(a+b|x, 4|%)"4 and erf *(z) denotes the in-

ing to a recursion relation of the form verse error function. The relation, E¢4), can be used to
obtain the corresponding PDP(x) numerically, where
Xn=R(Xp_1), (1) P(x)dx denotes the probability to find a value betweesmd

x+dx after a given iteration.

where the outcome, after thenth iteration step depends It is possible to make a step forward by determining the
only on its previous value,_, after the —1)th step, re- equation thaP(x) satisfies. To this end, note that the prob-
flecting the Markov character of the process. The randonability P(x)dx is the result of all possible transitiorys™x
processR(y) in Eq. (1) is completely specified by giving the from an intervaly,y+dy] into the interval x,x+dx] dur-
transition probabilityw(y~x)dx, representing the probabil- ing a given iteration step. Similarly, the probability to be in
ity that starting from the valug the outcome will fall into  the intervally,y+dy] after the previous step is given by the
the interval[ x,x+dx]. PDF P(y) itself. Therefore the PDRP(x) for the random

The transition PDRV(yx) is assumed, similarly as for processes in Eq4) satisfies the self-consistent equation
ARCH(1) processe$4], to be given by

1 2 P(X)=f dyWy ™ x)P(y). 5
W(ymx)= exp — — /|, 2 o
(y™x) 2my 207 2
Although a complete analytical solution of E@) does not
where here seem feasible, one can argue that a power-law decay
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P(x)~|x|~% for |x|—o (6) oF -..... 7

[ ""@ 3

is consistent with Eq(5). To see this we use E¢) in Eq. -20 s \ _

(5) and note that folx|— the main contribution to the i 4 ]

integral comes from asymptotically large valuedgf This — [ ]

suggests us that one can accurately reptgeby its limiting \R/ -40 C ]

expressionay=by| (i.e., whenb|y|>a) and P(y) by =

ly| = in the integrand of Eq(5), to obtain ,.‘_O‘ -60F .

~ Y EEPEPETITT BEPETETITTT BRI R BRI B

2 * X2 : A4 BENANAEULALLL BENLERSLALLLL BENLELSLALLL LA ALLY BT

X| "= dyy *ltexg — ———|. 7 = 0 SRR 7]

. Wf 0 Y p( 2b2’qy2) " & 5 “"'\ :

The integral is finite fore>0 and can be evaluated exactly E‘ 0 C \\ ]

yielding ° a0k ]

1 : :

x| 7= | = (202 D (af2) X7 (@) -60F (b :

V7 ; ]

The quantity within parenthesis on the right-hand side of the 101 101 103
equation must equal 1 in order to be consistent with the X

left-hand side of the equation. Thus the following exact re-

lation between the parametbrand the exponen& is ob-
tained,

1
b~ (e Dla—_—_pla 1120 4/2), ©)
=

)

consistent with the known result fogr=2 [5]. In general Eq.
(9) cannot be solved forr explicitly, but can be used to
determine the value db required to yield a given value of
the exponentx.

It is therefore instructive to study the limiting casks
—0 andb—co from Eq.(9), for which explicit relations can
be derived. In the cade— 0, one expects that— o, since
P(x) reduces to a Gaussian in that lihéf. Eq. (5)]. Using
the asymptotic forml’(z)=(z/e)*\y2mz, whenz—x (see,
e.g., Ref[7]), we find

e
—— for b—0.

a= b2

(10

In the caseb—o0, we expect thatv—0. Using thenl'(z2)
=1/z, whenz—0, we obtain

21

——— for
T phla

a= b— oo,

11

The value of the exponent is intimately related to the
moments M, of the PDF P(x), My=(xP)
=[7_dx/x|PP(x) (with p>—1 to ensure integrability
around the origin which diverge forp=a—1. Clearly,
P(x) can be normalized according fd ..dxP(x)=1, when
a>1. The corresponding values bfcan be found easily by
taking the limita—21 in Eq. (9). Thus valuesa=1 corre-
spond to

FIG. 1. Successive slopeasin[P(x)]/dIn(x) of the PDFP(x)
versusx for the cases(a) q=2 (ARCH), with a=0.18 for (from
bottom to top b=0.04, 0.1, 0.2, 0.3, 0.4, and O{8ontinuous
lines). (b) g=1 (LARCH), with a=0.379 for(from bottom to top
b=0.2, 0.3, 0.4, 0.5, 0.6, and O(@ontinuous lines The continuous
lines denote the results obtained by numerically solving(Eg.and
the horizontal straight lines the asymptotic values expectedrfor
from Eq. (9).

a4

27

: (12

b<by=2 exp{ (2—\/F+

v
In2

where y=0.577 215664 9 is the Euler's constant. Equation
(12) yields by=3.6377 forq=2, andby=2.6973 forq=1.

A prominent role is also played by the second monient
variance,o?), and the fourth moment which is related to the
kurtosis k= (x*)/a*. The variance diverges when<3 and
the kurtosis whena<5. For instance, fog=2, Eq. (9)
yieldsb=1 whena =3, corresponding to the divergence of
o? according to the known result?=a/(1—b) [4]. Simi-
larly, x diverges whemnx=5, corresponding to the value
=1/\/3, consistent with the exact expressier 3+ 6b%/(1
—3b?) [4]. In the case of LARCH, i.e., foq=1, the vari-
ance is given by

_a’d,
1-b?

o? (13

with d,=1+2c,b/(1—c,b) andc,= 2/, while the fourth
moment reads

1+ 2h?
2d, =

3a*

1-3b*

8c,b3d;
1-2c,b®

(x*= (14)
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where o,=7yt+ar, 7>0, O=sa<w, and A(pB)
4 =I'(1/B)/B, with B>0. Simple exponential relaxation of
FIG. 2. Successive slopasIn[R()}/dIn(t) for the relaxation W(7,t) corresponds t@=1, for whichA(1)=1. Clearly, in
function R(t) versust for the cases:(a B=1, with 7,=0.2 the case of a single relaxation channel, i.e.,der0, R(t)
for (from bottom to topa=0.1, 0.2, 0.3, and 0.¢ontinuous lines =[A(B) 7o] L exf — (t/7)"].
(o) B=0.9 with 7o=0.2 for (from bottom to top a=0.07, 0.1, Here again, we are interested in the asymptotic form of
0.2, and 0.3(continuous lines The continuous lines denote the R(t) whent—o. Following the same procedure outlined
results obtained by numerically solving E@.5), using Eq.(16), above for generalized ARCH processes, we find Rét)

and the straight lines the asymptotic values expectedxfdrom ~t~%, whent— o, where the exponent obeys the relation,
Eq. (17).

ith dy= b/(1—c1b)+3d,b?/(1—-b?), indicati a-py_L(2/B)
wit 3=1+3c.b/(1—c4b)+3d,b/(1 ), indicating a (e D= ' (17)
that o diverges again fob=1, while the kurtosis forb r'(1/p)
=371 as can be easily verified from E¢0). Numerical

results for the casq=2 andq=1 shown in Fig. 1 confirm Nymerical results for the casg=1 and 8=0.9 shown in
Eq. (9). Note the rather slow convergence of Fig. 2 confirm Eq.(17).

dIn[P(x)}/dIn(x) towards its asymptotic value. o Regarding the limiting behaviors ofr, we find «
Let us next conS|de_r relaxation _phenomena._Wlthln the_ epla? when a—0, and a=g/[al'(1/8)] when a— .
present context, we aim to describe a relaxation procespne case a=1 corresponds to the valuesi<a,
R(t), peing a.function of say, the tinte by a self-consistent =exd —I"'(1/8)/T'(1/8)], wherel'’ (x) denotes the first de-
equation similar to Eq(5), rivative of I'(x) with respect tox. For instance, fop=1 one
" hasa;=exp(y)=1.7811. The behavior of versus the pa-
R(t):f drW(r,t)R(7). (15) rametera is shown in Fig. 3 for selected values of the expo-
0 nentpg.

The processR(t) can be seen as resulting from a “self- M.P. gratefully acknowledges the Alexander von Hum-
regulated” superposition of different relaxation channels,boldt FoundationFeodor Lynen prograjnfor partial finan-

each one characterized by a time decay of the form cial support.
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