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Self-generated power-law tails in probability distributions
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We consider random processes characterized by the presence of correlations in their variance, or more
generally in some of their moments. Typical examples are constituted by autoregressive conditional hetero-
skedasticity~ARCH! processes which are known to display power-law tails in the associated probability
distributions. Here, we determine the corresponding exponents exactly and extend these results to relaxation
phenomena which can be expected to play a role in natural sciences.
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Probability distribution functions displaying power-la
tails are ubiquitous in natural sciences and finance, at lea
some range of length or time scales@1#. Their study is clearly
an important task for undertanding the underlying mec
nisms that generate them in the context of natural phen
ena @2# and in the description of the distribution of stoc
prices in finance@3#.

Here, we study ‘‘self-regulated’’ random processes d
playing correlations in the moments of their standard dev
tion, as a simple generalization of the well-known auto
gressive conditional heteroskedasticity~ARCH! processes, in
which the correlations are introduced in their variance@4#.
Although it is known that the associated probability distrib
tion functions~PDFs! decay asymptotically as power law
~cf. e.g., Podobniket al. in Ref. @3#!, the exact value of the
corresponding asymptotic exponents are known in a part
lar case only@5#. The aim of our work is to determine them
in a more general fashion. Such relations are not only in
esting from a theoretical point of view, but might also pro
useful concerning applications, for example, in the contex
extremal events@5#.

The random processes we are interested in, denoted
nerically asR, produce a sequence of numbers$xn% accord-
ing to a recursion relation of the form

xn5R~xn21!, ~1!

where the outcomexn after thenth iteration step depend
only on its previous valuexn21 after the (n21)th step, re-
flecting the Markov character of the process. The rand
processR(y) in Eq. ~1! is completely specified by giving th
transition probabilityW(y{x)dx, representing the probabil
ity that starting from the valuey the outcome will fall into
the interval@x,x1dx#.

The transition PDFW(y{x) is assumed, similarly as fo
ARCH~1! processes@4#, to be given by

W~y{x![
1

A2psy

expS 2
x2

2sy
2D , ~2!

where here
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2[~a1buyuq!2/q , ~3!

andq.0, a.0, andb>0 are the model parameters, and t
prefactor 1/(A2psy) ensures the normalization conditio
*2`

` dxW(y{x)51. The caseq52 corresponds to standar
ARCH~1! processes, while the linear form for the caseq
51 corresponds to the so-called linear ARCH~1!, or
LARCH~1! processes@6#.

A simple prescription can be derived for dealing with E
~1! numerically. To do this, note that the integralI (y,x)
[*2`

x dx8W(y{x8), whereI (y,x)P@0,1# ;x,y, is the ac-
cumulated probability that the transition occurs fromy into
the interval (2`,x#. Hence to obtain a valuexn after thenth
step we generate an uncorrelated random numberr n , ho-
mogenously distributed in the interval@0,1#, and determine
xn such thatI (xn21 ,xn)5r n is satisfied. Solving forxn , we
obtain

xn5R~xn21![A2sxn21
erf21~2r n21!, ~4!

wheresxn21
5(a1buxn21uq)1/q and erf21(z) denotes the in-

verse error function. The relation, Eq.~4!, can be used to
obtain the corresponding PDFP(x) numerically, where
P(x)dx denotes the probability to find a value betweenx and
x1dx after a given iteration.

It is possible to make a step forward by determining t
equation thatP(x) satisfies. To this end, note that the pro
ability P(x)dx is the result of all possible transitionsy{x
from an interval@y,y1dy# into the interval@x,x1dx# dur-
ing a given iteration step. Similarly, the probability to be
the interval@y,y1dy# after the previous step is given by th
PDF P(y) itself. Therefore the PDFP(x) for the random
processes in Eq.~4! satisfies the self-consistent equation

P~x!5E
2`

`

dyW~y{x!P~y!. ~5!

Although a complete analytical solution of Eq.~5! does not
seem feasible, one can argue that a power-law decay
©2001 The American Physical Society28-1



ly

th
th
re

f

on

e

of

r

H. EDUARDO ROMAN AND MARKUS PORTO PHYSICAL REVIEW E63 036128
P~x!;uxu2a for uxu→` ~6!

is consistent with Eq.~5!. To see this we use Eq.~2! in Eq.
~5! and note that foruxu→` the main contribution to the
integral comes from asymptotically large values ofuyu. This
suggests us that one can accurately replacesy by its limiting
expressionsy5b1/quyu ~i.e., whenbuyuq@a) and P(y) by
uyu2a in the integrand of Eq.~5!, to obtain

uxu2a5
2

A2pb2/qE0

`

dyy2a21 expS 2
x2

2b2/qy2D . ~7!

The integral is finite fora.0 and can be evaluated exact
yielding

uxu2a5F 1

Ap
~2b2/q!(a21)/2G~a/2!G uxu2a. ~8!

The quantity within parenthesis on the right-hand side of
equation must equal 1 in order to be consistent with
left-hand side of the equation. Thus the following exact
lation between the parameterb and the exponenta is ob-
tained,

b2(a21)/q5
1

Ap
2(a21)/2G~a/2!, ~9!

consistent with the known result forq52 @5#. In general Eq.
~9! cannot be solved fora explicitly, but can be used to
determine the value ofb required to yield a given value o
the exponenta.

It is therefore instructive to study the limiting casesb
→0 andb→` from Eq.~9!, for which explicit relations can
be derived. In the caseb→0, one expects thata→`, since
P(x) reduces to a Gaussian in that limit@cf. Eq. ~5!#. Using
the asymptotic formG(z)>(z/e)zA2pz, when z→` ~see,
e.g., Ref.@7#!, we find

a5
e

b2/q
for b→0. ~10!

In the caseb→`, we expect thata→0. Using thenG(z)
>1/z, whenz→0, we obtain

a5A2

p

1

b1/q
for b→`. ~11!

The value of the exponenta is intimately related to the
moments M p of the PDF P(x), M p[^uxup&
5*2`

` dxuxupP(x) ~with p.21 to ensure integrability
around the origin!, which diverge for p>a21. Clearly,
P(x) can be normalized according to*2`

` dxP(x)51, when
a.1. The corresponding values ofb can be found easily by
taking the limit a→1 in Eq. ~9!. Thus valuesa>1 corre-
spond to
03612
e
e
-

b<b0[2 expF q

2Ap
S 22Ap1

g

ln 2D G , ~12!

whereg>0.577 215 664 9 is the Euler’s constant. Equati
~12! yields b0>3.6377 forq52, andb0>2.6973 forq51.

A prominent role is also played by the second moment~or
variance,s2), and the fourth moment which is related to th
kurtosisk[^x4&/s4. The variance diverges whena<3 and
the kurtosis whena<5. For instance, forq52, Eq. ~9!
yields b51 whena53, corresponding to the divergence
s2 according to the known results25a/(12b) @4#. Simi-
larly, k diverges whena55, corresponding to the valueb
51/A3, consistent with the exact expressionk5316b2/(1
23b2) @4#. In the case of LARCH, i.e., forq51, the vari-
ance is given by

s25
a2d2

12b2
~13!

with d2[112c1b/(12c1b) andc15A2/p, while the fourth
moment reads

^x4&5
3a4

123b4 F2d2

112b2

12b2
1

8c1b3d3

122c1b3
21G ~14!

FIG. 1. Successive slopesd ln@P(x)#/d ln(x) of the PDF P(x)
versusx for the cases:~a! q52 ~ARCH!, with a50.18 for ~from
bottom to top! b50.04, 0.1, 0.2, 0.3, 0.4, and 0.5~continuous
lines!. ~b! q51 ~LARCH!, with a50.379 for~from bottom to top!
b50.2, 0.3, 0.4, 0.5, 0.6, and 0.7~continuous lines!. The continuous
lines denote the results obtained by numerically solving Eq.~5!, and
the horizontal straight lines the asymptotic values expected foa
from Eq. ~9!.
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with d3[113c1b/(12c1b)13d2b2/(12b2), indicating
that s2 diverges again forb51, while the kurtosis forb
5321/4, as can be easily verified from Eq.~9!. Numerical
results for the caseq52 andq51 shown in Fig. 1 confirm
Eq. ~9!. Note the rather slow convergence
d ln@P(x)#/d ln(x) towards its asymptotic value.

Let us next consider relaxation phenomena. Within
present context, we aim to describe a relaxation proc
R(t), being a function of say, the timet, by a self-consisten
equation similar to Eq.~5!,

R~ t !5E
0

`

dtW~t,t !R~t!. ~15!

The processR(t) can be seen as resulting from a ‘‘se
regulated’’ superposition of different relaxation channe
each one characterized by a time decay of the form

FIG. 2. Successive slopesd ln@R(t)#/d ln(t) for the relaxation
function R(t) versus t for the cases:~a! b51, with t050.2
for ~from bottom to top! a50.1, 0.2, 0.3, and 0.4~continuous lines!.
~b! b50.9 with t050.2 for ~from bottom to top! a50.07, 0.1,
0.2, and 0.3~continuous lines!. The continuous lines denote th
results obtained by numerically solving Eq.~15!, using Eq.~16!,
and the straight lines the asymptotic values expected fora from
Eq. ~17!.
,
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W~t,t !5
1

A~b!st
expS 2F t

st
GbD , ~16!

where st5t01at, t0.0, 0<a,`, and A(b)
5G(1/b)/b, with b.0. Simple exponential relaxation o
W(t,t) corresponds tob51, for whichA(1)51. Clearly, in
the case of a single relaxation channel, i.e., fora50, R(t)
5@A(b)t0#21 exp@2(t/t0)

b#.
Here again, we are interested in the asymptotic form

R(t) when t→`. Following the same procedure outline
above for generalized ARCH processes, we find thatR(t)
;t2a, whent→`, where the exponenta obeys the relation,

a2(a21)5
G~a/b!

G~1/b!
. ~17!

Numerical results for the casesb51 andb50.9 shown in
Fig. 2 confirm Eq.~17!.

Regarding the limiting behaviors ofa, we find a
5eb/ab when a→0, and a5b/@aG(1/b)# when a→`.
The case a>1 corresponds to the valuesa<a1
[exp@2G8(1/b)/G(1/b)#, whereG8(x) denotes the first de
rivative of G(x) with respect tox. For instance, forb51 one
hasa15exp(g)>1.7811. The behavior ofa versus the pa-
rametera is shown in Fig. 3 for selected values of the exp
nentb.

M.P. gratefully acknowledges the Alexander von Hum
boldt Foundation~Feodor Lynen program! for partial finan-
cial support.

FIG. 3. Power-law relaxation exponenta versus model param
etera, after Eq.~17!, for different values of the exponentb.
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